找找看小说网【www.shcflt.com】第一时间更新《科技狂人》最新章节。
解这个方程,有两个解:
(1+√5)/2=1.6180339887...
(1-√5)/2=-0.6180339887...
注意这两个数的小数部分是完全相同的。正数解(1.6180339887...)被称为黄金数或黄金比率,通常用φ表示。这是一个无理数(小数无限不循环,没法用分数来表示),而且是最无理的无理数。同样是无理数,圆周率π用22/7,自然常数e用19/7,√2用7/5就可以很精确地近似表示出来,而φ则不可能用分母为个位数的分数做精确的有理近似。
黄金数有一些奇妙的数学性质。它的倒数恰好等于它的小数部分,也即1/φ=φ-1,有时这个倒数也被称为黄金数、黄金比率。如果把一条直线AB用C点分割,让AB/AC=AC/CB,那么这个比等于黄金数,C点被称为黄金分割点。如果一个等腰三角形的顶角是36度,那么它的高与底线的比等于黄金数,这样的三角形称为黄金三角形。如果一个矩形的长宽比是黄金数,那么从这个矩形切割掉一个边长为其宽的正方形,剩下的小矩形的长宽比还是黄金数。这样的矩形称为黄金矩形,它可以用上述的方法无限切割下去,得到一个个越来越小的黄金矩形,而如果把这些黄金矩形的对角用弧线连接起来,则形成了一个对数曲线。常见的报纸、杂志、书、纸张、身份证、信用卡用的形状都接近于黄金矩形,据说这种形状让人看上去很舒服。的确,在我们的生活中,黄金数无处不在,建筑、艺术品、日常用品在设计上都喜欢用到它,因为它让我们感到美与和谐。
那么黄金数究竟和斐波纳契数有什么关系呢?根据上面的方程:
φ^2-φ-1=0,
可得:
φ=1+1/φ
=1+1/(1+1/φ)
=...
=1+1/(1+1/(1+1/(1+...)))
根据上面的公式,你可以用计算器如此计算φ:输入1,取倒数,加1,和取倒数,加1,和取倒数,……,你会发现总和越来越接近φ。让我们用分数和小数来表示上面的逼近步骤:
φ≈1
φ≈1+1/1=2/1=2
φ≈1+1/(1+1/1)=3/2=1.5
φ≈1+1/(1+1/(1+1))=5/3=1.666667
φ≈1+1/(1+1/(1+(1+1)))=8/5=1.6
找找看小说网【www.shcflt.com】第一时间更新《科技狂人》最新章节。
本章未完,点击下一页继续阅读。